Online Human-Bot Interactions: Detection, Estimation, and Characterization

نویسندگان

  • Onur Varol
  • Emilio Ferrara
  • Clayton A. Davis
  • Filippo Menczer
  • Alessandro Flammini
چکیده

Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark the classification framework by using a publicly available dataset of Twitter bots. This training data is enriched by a manually annotated collection of active Twitter users that include both humans and bots of varying sophistication. Our models yield high accuracy and agreement with each other and can detect bots of different nature. Our estimates suggest that between 9% and 15% of active Twitter accounts are bots. Characterizing ties among accounts, we observe that simple bots tend to interact with bots that exhibit more human-like behaviors. Analysis of content flows reveals retweet and mention strategies adopted by bots to interact with different target groups. Using clustering analysis, we characterize several subclasses of accounts, including spammers, self promoters, and accounts that post content from connected applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring bot and human behavioral dynamics

Bots, social media accounts controlled by software rather than by humans, have recently been under the spotlight for their association with various forms of online manipulation. To date, much work has focused on social bot detection, but little attention has been devoted to the characterization and measurement of the behavior and activity of bots, as opposed to humans’. Over the course of the y...

متن کامل

BotOnus: an online unsupervised method for Botnet detection

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...

متن کامل

Spatial Game Signatures for Bot Detection in Social Games

Bot detection is an emerging problem in social games that requires different approaches from those used in massively multi-player online games (MMOGs). We focus on mouse selections as a key element of bot detection. We hypothesize that certain interface elements result in predictable differences in mouse selections, which we call spatial game signatures, and that those signatures can be used to...

متن کامل

An in-depth characterisation of Bots and Humans on Twitter

Recent research has shown a substantial active presence of bots in online social networks (OSNs). In this paper we utilise our past work on studying bots (Stweeler) to comparatively analyse the usage and impact of bots and humans on Twitter, one of the largest OSNs in the world. We collect a large-scale Twitter dataset and define various metrics based on tweet metadata. We divide and filter the...

متن کامل

Blog or block: Detecting blog bots through behavioral biometrics

1389-1286/$ see front matter 2012 Elsevier B.V http://dx.doi.org/10.1016/j.comnet.2012.10.005 ⇑ Corresponding author. Tel.: +1 917 698 5015. E-mail addresses: [email protected] (Z. Chu (S. Gianvecchio), [email protected] (A. Koeh (H. Wang), [email protected] (S. Jajodia). Blog bots are automated scripts or programs that post comments to blog sites, often including spam or other malicious links. An e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017